- Costa J, Rabson AS. Generalised Kaposi's sarcoma is not a neoplasm. Lancet 1983, i, 58.
- Brooks JJ. Kaposi's sarcoma: a reversible hyperplasia. Lancet 1986, ii, 1309-1311.
- Lo SC, Liotta LA. Vascular tumors produced by NIH/3T3 cells transfected with human AIDS Kaposi's sarcoma DNA. Am J Pathol 1985, 118, 7–13.
- Delli Bovi P, Curatola AM, Kern FG, Greco A, Ittmann M, Basilico C. An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 1987, 50, 729-737.
- Salahuddin SZ, Nakamura S, Biberfeld P et al. Angiogenic properties of Kaposi's sarcoma-derived cells after long term culture in vitro. Science 1988, 242, 430–433.
- Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. *Nature* 1990, 345, 84–86.
- Vogel J, Hinrichs SH, Reynolds RK, Luciw PA, Jay G. The HIV tat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature 1988, 335, 606-611.
- Penn I. Kaposi's sarcoma in immunosuppressed patients. J Clin Lab Immunol 1983, 12, 1-10.
- Centers for Disease Control. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men—New York City and California. MMWR 1981, 30, 305–308.

- Biggar RJ, Melby M, Kesterns L et al. Kaposi's sarcoma in Zaire is not associated with HTLV-III infection. Lancet 1984, ii, 1051–1052.
- Bayley AC, Downing RG, Cheingsong-Popov R, Tedder RS, Dalgleish AG, Weiss RA. HTLV-III serology distinguishes atypical and endemic Kaposi's sarcoma in Africa. Lancet 1985, i, 359–361.
- Beral V, Peterman TA, Berkelman RL, Jaffe HCW. Kaposi's sarcoma among persons with AIDS: a sexual transmitted infection? Lancet 1990, 335, 123-128.
- Friedman-Kien AE, Saltzman BR, Cao Y et al. Kaposi's sarcoma in HIV-negative homosexual men. Lancet 1990, 335, 168–169.
- 21. Dictor M, Järplid B. The cause of Kaposi's sarcoma: an avian retroviral analog. J Am Acad Dermatol 1988, 18, 398-402.
- Hayes HM, Biggar RJ, Pickle LW, Hoover R, Toft JD. Canine transmissible venereal tumour: a model for Kaposi's sarcoma? Am J Epidemiol 1983, 117, 108-109.
- Cohen D. The biological behaviour of the transmissible venereal tumor in immunosuppressed dogs. Eur J Cancer 1973, 9, 253-258.
- 24. Cohen D. The canine transmissible venereal tumor: a unique result of tumor progression. *Adv Cancer Res* 1985, **43**, 75–112.
- Katzir N, Arman E, Cohen D, Givol D, Rechavi G. Common origin of transmissible venereal tumors (TVT) in dogs. Oncogene 1987, 1, 445-448.

Acknowledgement—I thank the Cancer Research Campaign for support.

Eur J Cancer, Vol. 26, No. 6, pp. 659-660, 1990.
Printed in Great Britain

0277-5379/90\$3.00 + 0.00 © 1990 Pergamon Press plc

Morpholinyl Anthracyclines: Option for Reversal of Anthracycline Resistance

ANTHRACYCLINES are potent chemotherapeutic drugs whose mechanisms of action are still intriguing. The most widely used are doxorubicin and daunorubicin. Intrinsic or acquired anthracycline resistance in tumours hampers their clinical effectiveness. Efficacy, toxicity and drug resistance may be related to different parts of the anthracycline molecule. Helen Coley and her colleagues (p. 665) add to our knowledge of newly synthesized anthracycline derivatives which have several attractive features.

Anthracyclines may be cytotoxic to cells at the outer cell membrane [1]. In general, however, to be cytotoxic, the drug has to enter the cell. One of the earliest proposed mechanisms is DNA intercalation. The anthracycline chromophore fits stereometrically between two base-pairs, preventing replication and transcription and leading to cell death [2]. Another possible mechanism is the ability to turn topoisomerases into cellular toxins [3]. This, also, is not a full explanation because the in vitro capacity to inhibit topoisomerase II is not linearly related to cytotoxicity [3]. Anthracyclines can induce DNA damage. After exposure to anthracyclines, DNA-DNA crosslinks, DNA-protein crosslinks, and single-stranded and doublestranded breaks can be detected. This could, at least in part, be due to the generation of free radicals by the quinone moiety [4]. None of these mechanisms can be seen as the principal cause of cytotoxicity; all probably participate to varying extents depending on the structure of the anthracycline.

The cell membrane plays, in contrast to its limited role in cytotoxicity, an important part as a first-line defence in drug

resistance. The most extensively studied mechanism is multidrug resistance (MDR) mediated by P-glycoprotein. The P-glycoprotein mediated membrane pump removes anthracyclines that have entered the cells by diffusion through the lipid compartment of the membrane [5]. The result is decreased intracellular drug concentrations. Other membrane pumps have also been described [5]. Alternative mechanisms of anthracycline resistance include decreased topoisomerase II activity and enhanced detoxifying enzyme activities, including raised glutathione peroxidase and glutathione S-transferase [5–8].

The ideal anthracycline should have several properties. It should have at least the same anti-tumour activity as the parent compound. Therefore, all the supposed mechanisms of action should be present and additional mechanisms would be welcome. In addition, the compound should not be affected by anthracycline resistance mechanisms. Several drugs partly fulfil these requirements. In *in vitro* systems, these drugs have good anti-tumour activity and also show activity in cell lines with various resistance mechanisms [9]. Their greater effectiveness is primarily due to increased lipophilicity, itself leading to higher intracellular drug levels. Some of these drugs have been tested in clinical trials. Examples include idarubicin, detorubicin and esorubicin. However, the advantage of the analogues over doxorubicin is limited [10].

Interesting analogues are the 3' N-morpholinyl substituents. These drugs have several of the required properties. Morpholinyl anthracyclines are highly lipophilic, diffuse rapidly through the cell membrane, and reach high intracellular levels [11].

Intercalation in DNA occurs in the same way as for doxorubicin. In particular, cyanomorpholinyl substituted anthracyclines can be activated, after which they bind covalently to DNA [11-13]. This mechanism could contribute to cytotoxicity and is a new finding compared with doxorubicin. The binding is very rapid the drug is bound to DNA before it can be pumped out by Pglycoprotein or other membrane pumps [11, 12]. In vitro and in vivo evidence from Coley and colleagues and others [11, 12, 14, 15] suggests that these drugs can overcome resistance. Doxorubicin-resistant cell lines with resistance due to an altered topoisomerase II were not cross-resistant to morpholinyl anthracyclines [14, 16]. These drugs also show promise for the treatment of topoisomerase II related resistance. The morpholinyl anthracyclines can generate free radicals. In human ovarian carcinoma cells made resistant to cyanomorpholino-doxorubicin, an increased free radical scavenging system was found [17]. Potential cardiotoxicity due to free radicals will not be of clinical importance because morpholinyl anthracyclines are 100-1000 fold more active than the parent drug and will therefore be administered at lower dose. The morpholinyl anthracycline structure can possibly be further improved by substitution of other parts of the molecule. Coley and colleagues describe 9alkyl substitutions that circumvent resistance. Two phase I studies with the morpholinyl anthracyline MX2 have been reported: haematological toxicity was dose-limiting but no cardiac toxicity occurred [18, 19].

MDR associated with P-glycoprotein expression is the best studied resistance mechanism [5, 6]. P-Glycoprotein is expressed in several normal tissues as well as in various tumours [20]. There are, however, many tumours that show intrinsic or acquired doxorubicin resistance mostly without P-glycoprotein expression. The frequency of other mechanisms, such as topoisomerase II related anthracycline resistance, in human tumours is not yet clear. To date, clinical trials with anthracyclines and modulators that block the P-glycoprotein pump have had limited success. This is partly because full use of some modulators is hampered by side-effects and it is often not known whether the resistant tumours are actually P-glycoprotein positive.

Resistance mechanisms may vary between tumour types. Heterogeneity may also occur within a tumour and various mechanisms may even play a role within one tumour cell. Therefore, new anthracycline analogues with activity against P-glycoprotein MDR cells as well as against cells with atypical (topoisomerase II) mediated MDR are extremely interesting clinically. Whether the new morpholinyl analogues will have good anti-tumour activity in the clinic remains to be seen.

Anthracyclines have impressive clinical activity, although the exact mechanism of action is not known and the drugs are subject to several cellular resistance mechanisms. Based on factors known to determine cytotoxicity, improved anthracycline structures can be synthesized with high activity, resistance-modifying effects, and decreased cumulative cardiotoxicity.

Elisabeth G.E. de Vries
Jan G. Zijlstra
Division of Medical Oncology
Department of Internal Medicine
University Hospital Groningen
The Netherlands

- 1. Tritton TR, Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. *Science* 1982, 217, 248–250.
- Quigley GJ, Wang AH-J, Ughetto G, van der Marel G, van Boom JH, Rich A. Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpC). Proc Natl Acad Sci USA 1980, 77, 7204-7208.
- Bodley A, Liu LF, Israel M et al. DNA topoisomerase II mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 1989, 49, 5969-5978.
- Begleiter A, Blair GW. Quinone-induced DNA damage and its relationship to antitumour activity in L5178Y lymphoblasts. Cancer Res 1984, 44, 78-82.
- Beck WT. Multidrug resistance and its circumvention. Eur J Cancer 1990, 26, 513-515.
- Moscow JA, Cowan KH. Multidrug resistance. J Natl Cancer Inst 1988, 80, 14-20.
- De Vries EGE, Meijer C, Timmer-Bosscha H et al. Resistance mechanisms in three human small cell lung cancer cell lines established from one patient during clinical follow-up. Cancer Res 1989, 49, 4175-4178.
- De Jong S, Zijlstra JG, de Vries EGE, Mulder NH. Reduced DNA topoisomerase II activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res 1990, 50, 304-309.
- Zijlstra JG, Meijer C, Timmer-Bosscha H, Le TKP, de Vries EGE, Mulder NH. Activity of anthracycline related compounds in a doxorubicin sensitive human small cell lung cancer line and its doxorubicin resistant descendant. Eur J Resp Dis 1987, 70, 53-55.
- Young CW, Raymond V. Clinical assessment of the structure-activity relationship of anthracyclines and related synthetic derivatives. Cancer Treat Rep 1986, 70, 51-63.
- 11. Streeter DG, Johl JS, Gordon GR, Peters JH. Uptake and retention

- of morpholinyl anthracyclines by adriamycin-sensitive and -resistant P388 cells. Cancer Chemother Pharmacol 1986, 16, 247–252.
- Scudder SA, Brown JM, Sikic BI. DNA crosslinking and cytotoxicity of the alkylating cyanomorpholino derivative of doxorubicin in multidrug-resistant cells. J Natl Cancer Inst 1988, 80, 1294-1298.
- Westendorf J, Aydin M, Marquardt H. Metabolism of morpholinoand cyanomorpholino anthracyclines. Proc Am Ass Cancer Res 1988, 29, A1105.
- 14. Grandi M, Mariani M, Ballinari D et al. Lack of cross resistance to certain anthracycline analogs in human leukemic multidrugresistant (MDR) cells expressing either P-glycoprotein (PGP-MDR) or altered DNA topoisomerase II (At-MDR). Proc Am Ass Cancer Res 1990, 31, A2118.
- Watanabe W, Komeshima N, Nakajima S, Tsuruo T. MX2, a morpholino anthracycline, as a new antitumour agent against drugsensitive and multidrug-resistant human and murine tumour cells. Cancer Res 1988, 48, 6653-6657.
- Chow KC, Ross WE. Effect of morpholinyl doxorubicin on cell survival and DNA breaks in wild-type and resistant Chinese hamster ovary (CHO) cells. Proc Am Ass Cancer Res 1989, 30, A2465.
- Lewis AD, Lau DH, Ross KL, Wolf CR, Hayes JD, Sikic BI. Glutathione metabolism in human ovarian cancer cells resistant to cyanomorpholino doxorubicin (MRA-CN). Proc Am Ass Cancer Res 1989, 30, A1979.
- Majima H. Phase I clinical and pharmacokinetic study of KRN 8602. Proc Am Soc Clin Oncol 1989, 8, A245.
- Ogawa M, Tabata M, Horikoshi N et al. Phase I trial of 3'-deamino-3'-morpholino-13-deoxy-10-hydroxycarminomycin hydrochloride (KRN-8602). Proc Am Soc Clin Oncol 1989, 8, A238.
- Goldstein LJ, Galski H, Fojo A et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 1989, 81, 116-124.